RamseteController
Ramsete controller for tracking tank trajectories.
The standard Ramsete control law from equation \((5.12)\) of this paper is \[ \begin{pmatrix}v\\ \omega\end{pmatrix} = \begin{pmatrix} v_d \cos (\theta_d - \theta) + 2 \zeta \sqrt{\omega_d^2 + b v_d^2} \Big\lbrack (x_d - x) \cos \theta + (y_d - y) \sin \theta \Big\rbrack\\ \omega_d + b v_d \frac{\sin(\theta_d - \theta)}{\theta_d - \theta} \Big\lbrack (x_d - x) \cos \theta - (y_d - y) \sin \theta \Big\rbrack + 2 \zeta \sqrt{\omega_d^2 + b v_d^2} (\theta_d - \theta) \end{pmatrix} \] where \(\zeta \in (0, 1)\) and \(b \gt 0\). Since \(b\) has units, we substitute \(b = \frac{\bar{b}}{l^2}\) where \(l\) is the track width.
Properties
Functions
Computes the velocity and acceleration command. The frame Target
is the reference robot, and the frame Actual
is the measured, physical robot.
Computes the velocity and acceleration command. The frame Target
is the reference robot, and the frame Actual
is the measured, physical robot.